If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20+3x-4.9x^2=0
a = -4.9; b = 3; c = +20;
Δ = b2-4ac
Δ = 32-4·(-4.9)·20
Δ = 401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{401}}{2*-4.9}=\frac{-3-\sqrt{401}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{401}}{2*-4.9}=\frac{-3+\sqrt{401}}{-9.8} $
| 10+4w=50 | | 2x–13=–6x+3 | | 9(b-93)=18 | | (0)=x-4 | | 6x-50=-14 | | (-7)=x-4 | | 5w-2=23 | | -2x+7x+5x-8x=8+5+4-14 | | (-8)=x-4 | | 1/2x=3/8=1/6 | | (-9)=x-4 | | 17a-15a=20 | | (-10)=x-4 | | a²+6a=-9 | | 5u/8-3=1/2 | | 7/8n-2=3/8n+9 | | 5/6x-8=1/5x+2 | | 18=17-c | | 3^7•3^x=9 | | a+4a+2a-4=38 | | 2x+13=3x-1x+18 | | 1/3x-11+28=-5 | | x^2+20x+75=375 | | 14+6k=19 | | 10x–5=6x+19 | | 3(y+4)+2(2+2y)=y-6y+12-(-4) | | 2x+12-7x=2 | | 10x–5=6x+19. | | 3(4m-7)-(m+1)=0 | | -8x+18=2(2x+-9) | | 2x+12=2x+10 | | -8+x/3=-2 |